Activity of Joint Research with NII

3 FEB 2017

Abstract

The activity was applied for public offer of joint research by National Institute of Informatics

Study for configuration methodology for overlay virtual network

Member:

Yoichi SATO (NEC)

Masayuki YOSHIDA (ADOC International)

Yukinori KISHIMOTO (NTT Com)

Hideki TANABE (NTT Com)

Tatsuya THOYAMA (OKIT)

Shigeo URUSHIDANI (NII)

Hiroshi YAMADA (NII)

Takashi KURIMOTO (NII)

User of SDN/NFV

Usecase for Service Providers

- Replace existing 300 kinds of equipment by Server+WBS (OCP)
- Network functionality and services are realized by software
- Suggest integrated reference model of orchestrator, controller and hardware
- AT&T, Verizon, NTT Com, SK Telecom, China Unicom and Google joined

Solution for Enterprise

- Solution for Enterprise (Virtual NW+NFV+Central Control)
- Replace NW Function which was SI in past with Cloud (NFV)
- Provider, rather than "Vendor"

Provide NW Service + SI by SD-WAN

OKINAWA OPEN LABORATORY

SD-WAN

Virtual NW with Overlay

- Configure Virtual NW on hybrid Underlay-NW consists of MPLS-VPN, Internet and 4G/5G/WiFi
- Deploy Edge devices on each branch to establish Overlay-Tunnel between Edges
- Bandwidth and Quality Control
 - Utilize Underlay with ACT-ACT configuration (more bandwidth than ACT-SBY)
 - Monitor Utilization/Quality to steer traffic with QoS rules
 - Reliability is improved by using physically separated network
- Additional Value
 - Chaining of VNF (FW, LB, DPI and WAN Acceleration)
 - Collaborate with Public cloud
- Centralized control, Policy management, Zero-touch provisioning
 - Route control for Edge and traffic is controlled in centralized
 - Controller configures Edge in remote automatically (Zero-touch provisioning)
 - Configuration of FW changed in one time by overwriting Policy
- Step by Step installation from existing NW
 - Trial → Partial installation → Full installation

Open SD-WAN

SD-WAN integrated with Open Source and general hardware

Joint research focused on "How to realize overlay virtual network"

Research overview

Technology for Virtual Network Configuration
 Method to realize Virtual NW with VXLAN Tunnel

OAM Functionality

CC: Down Detection, Loss detection of CC packet and

Delay Measurement

LB : Connectivity check

Path Switching Functionality
 Switch ACT-SBY
 Switch to Third Route

VXLAN Header

- Use Source UDP to identify Packet
 - ->Distinguish packet sent from user and packet used in NW management
- Add OAM field on payload to identify OAM type
- Identify Tunnel with VNI
 - ->Forwarding rule is decided by VNI

Virtual NW with VXLAN

Process of OAM

- Generate and Terminate OAM Packet on Controller
- OAM Functionality is realized by application on Controller

Process of Path Switching

 Down detection and switching process triggered by detection are processed by Controller

Test Configuration

- D-Plane
 Hybrid WAN configuration with L2VPN on SINET and the Internet Lagopus is deployed at each site to establish VXLAN Tunnel
- C-Plane
 Controller is connected to Lagopus with L2VPN on SINET

Path configuration of SINET

Path was provisioned by L2VPN, and path trail was selected to avoid route duplication

Latency measurement result with CC

Confirmation of Path Switching

1) Connect via Okinawa - Fukuoka – Osaka – Sapporo	Downtime(sec)
2) Shutdown VLAN Fukuoka – Osaka → Switch to Okinawa – Fukuoka - Sapporo	4.87
3) Shutdown VLAN Okinawa – Fukuoka → Switch to Okinawa – Osaka – Sapporo	5.50
4) Shutdown VLAN Osaka – Sapporo → Switch to route on the Internet	5.20
5) Recover VLAN Okinawa – Fukuoka and Shutdown VLAN for the Internet	5.08
→Switch to Okinawa – Fukuoka – Sapporo	

Path Switching triggered by Latency

Path Switching occurred after 5 minutes from delay was increased by NW Emulator Downtime for switching is almost 1 second

Path Switching Occurred (Lost only 1 ping))

Path Protection Switch triggered by Packet Loss

Path Switching occurred after Packet Loss rate was raised by NW Emulator Downtime is 6 seconds

Path Switching Occurred(Lost 6 ping)

Scalability of CC

Summary

- Realization of Open SD-WAN
 Researched and Developed technology to configure overlay virtual Network with Open Source Software and General small server
- Implementation of OAM Functionality
 Monitor status of WAN line by CC and,
 Trouble shooting by LB
 were enabled
- PoC on SINET5
 OAM Functionality
 Path Protection Switch Functionality
 were confirmed that they were effective
- Further Research
 Improvement of Scalability
 Prediction of Path Status

Acknowledgement

Highly appreciated to Nissho-Electronics for contribution of instrument at PoC on SINET

END